Portability of the MBASIC Machine-

Independent Design

M. C. Riggins
DSN Data Systems Development Section

Part of the current work of the DSN Software Standards Project concerns the
machine-independent design of the MBASIC processor. This article describes a
study effort toward a portable implementation of the machine-independent
design. The method made use of the STAGE2 portable, general-purpose macro
processor, by means of which it was possible to invent a set of seemingly
machine-independent macro templates for translation into an arbitrary target
assembly language. The conclusions reached by this study are that the macros
defined seem to form an adequate program MBASIC processor design language,
that it is possible to carry structured programming concepts to the assembly
language level, and that implementation by machine-independent macros may
not be quite as efficient as hand coding but may yield significantly lower

implementation costs.

l. Introduction
This article describes one phase of work done in

support of the MBASIC machine-independent design

(MID) activity. The purpose of the work was threefold: (1)
to validate the MID design, ie., to verify that the
algorithms supplied actually perform as required by the
MBASIC Language Specification (Ref. 1); (2) to evaluate
whether the design supplied was truly machine-indepen-
dent; and (3) to investigate methods which promote an
orderly and rapid implementation of this design on an
arbitrary target computer.

100

The design criteria specify that the design should be
free of characteristics peculiar to specific host computers
but should make maximum use of characteristics shared
among a defined class of computers. Considerations
beyond the set of common basic requirements define the
MBASIC environmental interface, which is then to be
undertaken as a separate implementation activity for each
host computer. Thus, the implementation of an MBASIC
processor into a given host computer consists of coding
the MID and designing and coding the environmental
routines which interface the MID to the system.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-24

If the MID could meet its goals, it seemed reasonable
that there would also be a method whereby the
implementation of the MID could take place as rapidly
and be as error-free as possible. That is, it seemed
reasonable to seek a way of coding the MID in a machine-
independent language—or at least in a language which
requires only relatively minor alteration to transfer that
body of code from one machine to another. Such a
philosophy severely limits the choice of a programming
language, for very few languages are machine-indepen-
dent, widely available, and suitable for coding language
processors. Languages such as FORTRAN and COBOL
are largely machine-independent and widely available but
inadequate for language implementation. Assembly lan-
guage makes for efficient programs but is certainly not
portable.

Il. Macro Languages

The best choice for implementing the MID seemed to
be one which would permit coding in a set of machine-
independent macros, which could then be translated into
an arbitrary target assembly language by merely redefining
the macro definition body to fit that host system. This
choice presumed that the macros themselves could take a
portable form acceptable to various hosts.

Fortunately, STAGE2 (Ref. 2) seemed ideally suited for
this purpose. STAGE2 is a general-purpose, readily
available, portable macro generator/processor that can be
installed in any computer capable of accepting ANSI-
FORTRAN. STAGE2 permits its user to define macro
“templates”, which, when sensed in the source stream,
then cause the generation of assembly language code also
supplied by the user. Moreover, STAGE2 was already
available on the U1108, so no further effort was required
to begin in the MBASIC portability study.

Furthermore, even if STAGE2 were not available on
another particular computer, the macro instructions, with
proper specifications, checked and certified correct by
previous implementation on the U1108, could serve as the
basis for coding on the envisioned host. In such a case, the
programmer himself is a manual macro translator.
Further, since the Ul108 implementation could be
certified correct, any failures in other implementations
could be isolated to coding errors on the new host system.

Ill. Portability of MBASIC

The envisioned process for implementing MBASIC into
a given system is illustrated in Fig. 1. The figure shows
several levels of documentation and their interrelation-

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-24

ships. The MBASIC Language Specification is contained in
a set of manuals (Ref. 1), which lead to the MID as a set of
flowcharts and environmental interface specifications (Ref.
3). Upon study of the flowcharts, a set of macro
specifications can be generated sufficient to encode the
MID. An outline of such specifications appears in
Appendix A of this article. The specifications, along with
the assembly language manuals for the host, lead the
programmer to providing proper macro body definitions
in the host assembly language. Then, the MID-macro
instructions can be translated (either by STAGE2 or
manually) into a host assembly language implementation
of the MID.

The machine-dependent design (MDD) proceeds simi-
larly, building the capability required by the environmen-
tal interface. The figure shows that some of the MID
macros may be useful in the MDD and should, of course,
be available to the MDD programmer, as well as the
assembly language of the host. The resultant MDD
assembly language, together with that for the MID, forms
the full MBASIC processor.

IV. The MID Macro Set

The MBASIC-MID is contained in a set of flowcharts
which follow a structured programming topology. For this
reason, a set of CRISP (Ref. 4) control structures, such as
IF...THEN...ELSE, LOOP.. .EXIT.. REPEAT, and DO
CASE, plus the MBASIC design conventions were
determined to be sufficient for the purpose of coding the
MID. To implement these macros, a set of utility macros
was designed and coded for stack manipulation, label
generation, and flow-of-control, all of which are for
internal use of the macros used to code the MID. The
entire set of macros has four subdivisions:

(1) Machine-independent system utility macros
(2) Machine-dependent utility macros

(3) Machine-independent MID macros

(4) Machine-dependent MID macros

These subdivisions are described below:

(1) Machine-independent system utility macros—These
macros function as routines to be used by other
macros for tasks such as stack manipulation, label
generation, and comments.

(2) Machine-dependent utility macros—These routines
generate assembly language code for addressing,
branching (conditional and nonconditional), subrou-
tine linkage, and carriage control. This set, like the

101

system utility macros, is for internal use by other
macros and will not appear in the code for the MID.

(3) Machine-independent MID macros—These macros
are the flow-of-control macros. They do not generate
any assembler code directly. Indirectly, through calls
to other macros, they generate code and manipulate
labels for the control structures IF...THEN
...ELSE, UNLESS.. . THEN.. .ELSE, DO
CASE, and LOOP. . .EXIT.. . REPEAT.

(4) Machine-dependent MID macros—These macros
generate code directly and handle procedure and
subroutine linkage, variable declaration, arithmetic
operations, and MBASIC design conventions.

There are two basic lines of division within this set of
macros: independence/dependence and utility/non-utility.
Independence/dependence separates the macros that
generate assembler code (dependence) directly from those
that do not (independence). Utility/non-utility separates
the macros that appear in the MID design code (non-
utility) from those that do not (utility). Using these macros,
the MBASIC MID could be coded using the same
structures that the flowcharts were written in. Verification
of the translation from flowchart to code was indeed made
much easier because of this. Additionally, each non-utility
macro generates an assembly code comment that aids in
understanding and debugging the assembly code, because
it specifies which macro call generated the code that
follows that comment.

As the design and implementation of the set of macros
proceeded, checking the macros, individually and in
groups, was also included. After a preliminary set of
macros, as defined by the specifications derived from the
MID (except for a few of the MID conventions), was
designed, implemented, and tested, a test program was
written to exercise all possible macros, directly or
indirectly. The test program is shown as Appendix A.
Even without a detailed macro specification, the test
procedure is fairly readable and understandable—far more
so than if the macros were more assembly-language-like.

This test program and the macros were run through the
STAGE2 system; the code was generated, assembled, and
executed. The output from this run, shown as Appendix B,
was verified to be that specified by the design of the test
program.

102

V. Coding the Design

The coding of the MBASIC MID was to take place in
multiple phases. However, at this writing, none of these
has begun. The first phase was to involve coding and
testing the first three tiers of the MID using dummy stubs
(Ref. 5) in place of references to modules at tier 4. In
succeeding stages, all ten tiers of the MID were to be
implemented. The implementation was not necessarily
meant to compete with the current operational MBASIC
processor on the 1108 in terms of efficiency. The code
generated by STAGE2 would, hopefully, be equivalent to
the operational processor, but it would probably be
somewhat slower because of the limited optimization
capability of STAGEZ. This was considered to be of minor
importance initially, because our aim was to implement
the design in a portable fashion even if it were likely to be
less efficient than coding the design by hand for a
particular machine.

When that design had been macro-coded and the
macro-coding verified, it would form a correct, compilable
source for multi-implementations. Hand coding or ma-
chine translation and optimization could conceivably then
make the operation very efficient, and more importantly,
could proceed, with the knowledge that any errors
detected were not in the design but somewhere in the
coding.

VI. Conclusions

The proof of the method described is incomplete, and
awaits an actual implementation for validation of the
techniques proposed. However, one conclusion can be
drawn unequivocally at this point: Carrying top-down
structured programming concepts to the assembly lan-
guage level for a particular computer needs no more
support than a macro processor such as STAGE2. Less
strongly, but with some degree of assurance, it seems fair
to state that the set of macros specified for the complete
MID form an adequate program design language (PDL)
for the MID which will serve as a better, more definite
basis for implementation than do the flowcharts. As a final
conclusion, it also seems fair to state, based on the
experience here, that portable machine-independent
portions of systems appear feasible and desirable but may
lead to some lack of efficiency in execution speed and core
utilization; however, they may yield significantly lower
initial implementation costs.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-24

References

1. Fundamentals of MBASIC, Vols. I and I, Jet Propulsion Laboratory, Pasadena,
California, March and October 1973 (JPL internal document).

2. Waite, W., Implementing Software for Nonnumeric Applications, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1973.

3. Software Specification Document: Machine Independent MBASIC, Jet
Propulsion Laboratory, Pasadena, California, to be published (JPL internal
document).

4. Tausworthe, R. C., “Control-Restrictive Instructions for Structured Program-
ming (CRISP),” The Deep Space Network Progress Report 42-22, pp. 134-151,
Jet Propulsion Laboratory, Pasadena, California, 1974.

5. Baker, F. T., Chief Programmer Teams: Principles and Procedures, Report
FSC 71-5108, IBM Federal Systems Division, Gaithersburg, Maryland, June
1971

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-24 103

104

MBASIC SYSTEM
MANUALS MANUALS
MBASIC
MDD
(FLOWCHARTS)
) ASSEMBLY MDD
IMACROS) MACRO DEFS LANGUAGE (MACRO AND
MANUALS AL MIXTURE)

MBASIC
MID
(AL)

Fig. 1. Implementation of the MBASIC processor by machine-

independent macro structures

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-24

Appendix A

$PROGRAM: MACTST MOD# 13
«1 DECLARE Y1(1)}% DECLARE AND INITIALIZE

¢DECLARE Y2(1): LOOP INDEX VARIABLES

¢DECLARE Y3(1)3

$DECLARE Y4(1)3

*DECLARE DX(1)3

:;1=(3)8 ASSIGN POSITIVE LITERAL VALUE

$Y22(1)

$Y3=Y2; ASSIGN VALUE OF VARIABLE (=1)

SYU=(3)3

:DX=(=1)3 ASSIGN NEGATIVE LITERAL VALUE

¢PRINT THE FOLLOWING PRINTOUT SHOULD APPEAR IN NUMERIC ORDER}
+3 LOOP :DO CASE Y1 OF 1 TO 33

olt $CASE 1::PRINT 3, FINAL CASE PRINTS LINES 4-10;

«5 :DO PROCED: TEST DOsCALL,»IFeLOOPYREPEAT
tEND3

o6 $CASE 2::PRINT 2, UNTIL LOOP AND ADDITION MACRO:
tEND? ’

o7 $CASE 3::PRINT 1, FIRST DO=-CASE TRANSFER}
tENDBLOCK:

.8 $Y1=Y1 + DXi ADDITION OF VARIABLE VALUE (==1)

EXIT IF (0) >= Y13
¢REPEAT:
«9 :PRINT MACRO TEST TERMINATED
¢tENDPROG :
¢{PROCEDURE: PROCED MODH 1.53%

<x TESTS CALL+IFsUNLESS/LOOP»AND REPEAT MACROS),AND *>}
<x ALSO ‘INCLUDED UTILITY MACROS UNDER =¢#s<r>p>=s<z *D;
ol ILOOP EXIT UNLESS Y2 <= (7)}

o2 SIF Y2 < (W)
o3 STHEN $IF Y4 > Y23 TEST VARIABLE VALUES (Yy=2),
ol STHEN $IF Y2 = (1)3
5 S$THEN SPRINT 4, TEST VALUES WITH <»dy=}
SEND3
o6 SELSE :PRINT 5, TEST VALUES WITH <»>,H}
$ENDBLOCK
tEND?
o7 PELSE :LOOP :PRINT 6, THIS LINE WILL BE PRINTED 3 TIMES;
8 Y3=Y3 + (1);
SEXIT UNLESS Y3 <= (3);
¢REPEATS
tENDBLOCK
: tEND3
«9/51 SELSE :CALL SUBRTN; TEST CALL,UNLESS,REPEAT
SENDBLOCK
o 10 tya2z=y2 + (1)
tREPEAT;

¢ENDPROC PROCED?

JPL DEEP SPACE NETWORK PROGRESS REPORT 42.24 105

{SUBROUTINE: SUBRTN MOD# S1i
<x* TEST SUBROUTINE NESTING, UNLESS *REPEAT *>;

«1 SUNLESS (5) < Y2i

o2 $THEN SUNLESS Y2 # (4);

o3 $THEN SPRINT 7. Y2 <= 5 AND Y2 = 43
tEND}
ol SELSE (PRINT 8, Y2 <= 5 AND Y2 # 43
o5 SUNLESS Y2 = (5)}
o6 $THEN :PRINT *x*%ERROR IN UNLESS Y2=(5)i
SEND/NOELSE
" $ENDBLOCK
tEND3
«7/52 ELSE :CALL suBSUB: TEST NESTING, REPEAT
' $ENDBLOCK #
¢RETURN;
$SUBROUTINE: SUBSUB MOD# S23%

<k TEST SUBROUTINE NESTING, REMAINING UNLESS,» AND REPEAT *>;
o1 SUNLESS Y2 > (6)}

2 STHEN $PRINT 9. Y2 <= 6}
.3 2IF Y2 0 (6)3
o4 STHEN :PRINT #xxERROR IN IF Y2#(6)}
:END ¢ NOELSE
{END? |
.5/53 $ELSE :CALL SBSBSB: TEST NESTING, REPEAT
:ENDBLOCK #
SRETURNS
:SUBROUTINE: SBSBSB MOD# S3i

<* TEST NESTINGe, REPEAT %>}
ol $LOOP :PRINT 10. THIS LINE WILL BE PRINTED TWICE}
3 $Y4=Y4 + (=1)3 ADDITION OF NEGATIVE LITERAL
o4/SH tCALL $S5SS(Y4)3 TRUTH VALUES + ARGUEMENT PASSING
SEXIT IF (1) >= Y4j
SREPEAT
¢RETURN3}

{SUBROUTINE: SSSS MODH Suj
ol SAL=TRUE(H#1 = (2)); Y4 IS PASSED PARAMETER
o2 ¢$IF Al 1S TRUE;

3 $THEN SPRINT 11. Y4 = 2 UPON ENTRY TO SSS5Si
tEND?
o SELSE $PRINT 12. THIS PATH TAKEN ON SECOND CALL TO SSSSi#
$ENDBLOCK
SRETURN?
$FINISHED

. 106 JPL DEEP SPACE NETWORK PROGRESS REPORT 42-24

Appendix B

THE FOLLOWING PRINTOUT SHOULD APPEAR IN NUMERIC ORDER
1. FIRST DO~CASE TRANSFER

2+ UNTIL LOOP AND ADDITION MACRO

3. FINAL CASE PRINTS LINES 4=10

4o TEST VALUES WITH <s>e=

5. TEST VALUES WITH <»>r#

6. THIS LINE WILL BE PRINTED 3 TIMES

6. THIS LINE WILL BE PRINTED 3 TIMES

6. THIS LINE WILL BE PRINTED 3 TIMES

7 Y2 <= 5 AND Y2 = 4

8¢ Y2 <= 5 AND Y2 # 4

9, Y2 <=

10, THIS LINE WILL BE PRINTED TWICE

11, Y4 = 2 UPON ENTRY TO SSsS

10. THIS LINE WILL BE PRINTED TWICE

12, THIS PATH TAKEN ON SECOND CALL TO SsSS
MACRO TEST TERMINATED

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-24 107

